4680电池详细解析

1.2. 核心创新

大电芯+全极耳+干电池技术

1.3. 性能突破

4680电池大幅提升了电池功率(6倍于2170电池),降低了电池成本(14%于2170电池),优化了散热性能、生产效率、充电速度,能量密度、循环性能有进一步的提升空间。

2. 结构改变

2.1. 全极耳

4680电池通过极耳结构的改变,大幅提升了电池功率、优化了散热性能、生产效率、充电速度。

2.1.1. 全极耳结构

极耳:从电芯中将正负极引出来的金属导电体,是电池充放电时的接触点。在电池工作中,电子从正极极耳流向负极极耳,其流经路径与电池内阻成正比,流经宽度与电池内阻成反比,而电池内部损耗功率与内阻的平方成正比,因此极耳接触面积越大,极耳间距越短,电池输出功率越高。

传统电池只有两个极耳,分别连接正极与负极,而4680电池实现了全极耳(直接从正极/负极上剪出极耳),从而大大增加了电流通路,并缩短了极耳间距,进而大幅提升了电池功率。

2.1.2. 全极耳优势

1、提升了输出功率:电池电流通路变宽,且内阻大幅减少,内部损耗随之降低,进而大幅提升了电池功率(6倍于2170电池)。

2、提升安全性:圆柱电池与片状电池不同,其散热为轴向居多,热量从极耳出散出。传统圆柱电池如2170只有两个极耳,热量传输通道窄,因此散热效果不好。4680电池极耳面积大大增加,热量传输通道宽阔,大大改善了散热效果(只有传统圆柱电池的20%),增强了电池的热稳定性。

3、快充性能大幅提升:由于全极耳结构,电子更容易在电池内部移动,电流倍率提高,因此充放电速度更快。

4、提高生产效率:消除生产线添加极耳的流程和时间,节省设备空间,减少出现制造缺陷的可能。

2.1.3. 全极耳工艺难点

1、全极耳制作中,极耳的收集问题:通俗的理解就是把极耳折在一起的工艺,目前有揉压极耳、切跌极耳、多极耳三种:

1)揉压极耳的极耳形态不受控,容易发生短路,制造时两段封闭,电解液渗入阻碍大;

2)切跌极耳(Tesla)斜切成片卷起,比无规则挤压好一些,占空间较小,但表面起伏度较大,制造时两段仍封闭,注液不能连续生产;

3)多极耳很难折叠整齐,极耳位置误差在外圈易被放大。

2、全极耳与集流盘或壳体连接中,对激光焊接技术要求较高:从点焊(传统两个极耳)到面焊(4680电池全极耳),焊接工序和焊接量都变多,激光强度和焦距不容易控制,易焊穿烧到电芯内部或者没有焊,目前电池良率较低(80%)。

图 Tesla切跌极耳成品

2.1.4. 全极耳带来的机遇

从以往2170电池的脉冲激光器点焊,到目前4680电池线或激光点阵,激光焊接工艺提升,可能会从原来的脉冲激光器变为连续激光器,整体造价增加。

2.2. 大电芯

2.2.1. 性能表现

4680电池较之前2170电池在直径和高度上具有提升,直径从21mm变为46mm,高度从70mm变为80mm,电芯厚度增加,曲率降低,空心部分更大。

2.2.2. 尺寸变大优势

1、降低电池成本:降低壳体在单位电池容量上的占比,结构件和焊接数量也显著减少(成本相比2170电池降低14%)。

2、提升能力密度:随着电池尺寸增大,电池组中电池数量减少,金属外壳占比减少,正极、负极等材料占比增加,能量密度提高。

3、bms系统更加省心:电池组中电池数量减少,对于电池的监测和状态分析更为简单。

4、结构强度增加,与CTC技术完美结合:4680尺寸更大结构强度更高,其作为结构电池成为车结构的一部分,既提供能源,也用作结构起支撑作用,节省了空间也减少了重量(10%),因此提升了续航里程(14%)。

2.2.3. 尺寸变大劣势

增加发热量:电池尺寸越大,发热越多,散热越难,因此热量控制更困难,电池爆炸产生的威力越大,为之前电池厂商想增加电池尺寸的最大瓶颈,Tesla通过全极耳技术进行了热稳定性能的突破。

2.2.4. 实际性能表现

随着电池尺寸增大,电池组中电池数量减少,金属外壳占比减少,正极、负极等材料占比增加,能量密度提高。与2170电池相比,4680电池能量方面提高了5倍,目前续航里程的提升(16%)主要来自CTC技术(14%),随着材料体系的不断升级,电池能量密度有进一步提升空间。

3. 干电池技术

干电极技术可同时用在正负极上。

3.1. 传统湿法工艺

需要将材料放置溶液中,再进行干燥和压成膜:使用有粘合剂材料的溶剂,其中NMP(N-甲基吡咯烷酮)是其中一种常见溶剂,将具有粘合剂的溶剂与负极或正极粉末混合后,将浆料涂在电极集电体上并干燥,其中溶剂有毒需回收,进行纯化和再利用,中间需要巨大、昂贵且复杂的电极涂覆机器。

3.2. 干电池工艺

干电极工艺彻底跳过加入溶液步骤,可省略繁复的涂覆,烘干等工艺,大幅简化生产流程:将活跃的正负极颗粒与聚四氟乙烯(PTFE)混合,使其纤维化,直接用粉末擀磨成薄膜压到铝箔或者铜箔上,制备出正负极片。

图:Tesla干电池工艺展示

3.3. 干电池优势

1、工艺简单,节省成本:不采用溶剂,省去了昂贵的涂覆机。

2、提升生产效率:干电极技术使生产速度提升至以前的七倍。

3、增加电池能量密度:有溶剂的情况下,锂与混有锂金属的碳不能很好的彼此融合,有第一次循环容量损失问题,干电池技术会大大改善这种问题,从而提升电池能量密度。同时增加正极材料厚度,从55μm提升至60μm 提升活跃电极材料比,使能量密度提升5%同时,保证功率密度。

3.4. 干电池工艺难点

目前工艺不成熟,电池要做厚,圆柱要卷起来,容易开裂。

4680电池核心创新工艺为:大电芯+全极耳+干电池技术,增强了电池功率与安全性,提升了生产效率、快充性能,降低了电池成本,能量密度、循环性能有进一步的提升空间。目前技术难点在于全极耳的制作和焊接、干电极工艺

电池资料

储能行业全套标准‍‍‍‍‍‍

2022-03-30

光伏储能一体机结构3D模型

2022-06-15

锂离子电池设计计算模板

2022-03-07

锂电池DFMEA分析表

2021-01-07

锂离子电池全套测试标准

2021-01-02

锂离子电池设计规范书

2020-12-29

锂电池PFMEA表

2020-12-26

新能源汽车换电站3D数据

2020-11-10

新能源车106项试验规范

2020-10-14

44页锂电池检测方法及标准

2020-12-08返回搜狐,查看更多

Copyright © 2088 秘境大冒险活动站 - 探索专属福利指南 All Rights Reserved.
友情链接